Showing posts with label Lithium Ion chemistry. Show all posts
Showing posts with label Lithium Ion chemistry. Show all posts

New Battery Boasts 7 Times More Energy Density


leaf-battery

Imagine a lithium-ion battery that packs 7 times more energy per kilogram than any battery available today. How would that change the future of electric vehicles?
Just last week, we reported on a conversation with  Mitsuhisa Kato, Toyota’s head of research and development, who complains that the batteries available today are simply not good enough to make EV’s a credible choice for most buyers. Kato said it will take a “Nobel Prize winning battery” before EV’s go mainstream. Toyota, Honda and the Japanese government have made a major commitment to hydrogen fuel cell cars instead.
This week a research team at the University of Tokyo School of Engineering has announced a new lithium ion battery that packs seven times more energy density – at 2,570 watt-hours per kilogram – than current lithium ion batteries. The team, led by Professor Noritaka Mizuno,  adds cobalt to the lithium oxide crystal structure of the positive electrode, which promotes the creation of oxides and peroxides during the charge/discharge cycle. In addition, it promises significantly faster recharge times as well.
Isn’t it ironic that the “Nobel battery” Toyota’s Kato referred to may have been invented by a team of Japanese scientists? For a more detailed technical explanation of the of the new battery, see the report first published in Nikkei Technology.
Of course, this breakthrough is still in the experimental stage. Energy dense lithium ion batteries will not be on the shelf at WalMart any time soon. But if the claims for the new battery prove valid, expect to see the struggle between EV’s and FCV tilt sharply in favor of electric vehicles. Now the range for the new Porsche Cayenne PHEV could be 112 miles instead of 16, and that shiny new Nissan LEAF could go over 500 miles on a full charge instead of just 73. And the Tesla Model S would be able to drive some 1,855 miles before needing to be plugged in.
Maybe now would be a good time for the folks at the University of Tokyo School of Engineering to find space for that Nobel Prize?



Source: Gas 2.

New Lithium-Ion Battery Uses Peroxide To Boost Energy Density By 7 Times: Report

Chevrolet Spark EV at CCS fast charging station in San Diego.
Chevrolet Spark EV at CCS fast charging station in San Diego.





















All electric vehicles currently in production use some form of lithium-ion chemistryin their battery packs.
Finding ways of improving that chemistry is therefore very important--the aim being to make future electric car batteries cheaper, more stable and more energy-dense for longer range.
Researchers from the School of Engineering at the University of Tokyo have found a way to develop a lithium-based battery with seven times the energy density of current lithium-ion batteries, according to Nikkei Technology.
This has, at least theoretically, each of the major benefits you'd expect should it be introduced in production form--lower cost, greater capacity and increased safety.
Led by Professor Noritaka Mizuno, the team have used a new material on the positive electrode in the battery, formed by adding cobalt to the lithium oxide crystal structure. This aids an oxidation-reduction reaction during which peroxides are produced, and electrical energy is generated.
The researchers claim energy density of 2,570 watt-hours per kilogram. That's actually a little less than the theoretical density of lithium-air technology (3,460 Wh/kg, and a current leader in lithium battery developments) but as a sealed design it's more stable (and therefore safer) than lithium-air.

The team also proved that there are no unwanted byproducts in the battery's acceptable charging and discharging cycle--no excess oxygen or carbon dioxide is produced during the reactions.
Tests at the university have also shown it's possible to repeatedly charge and discharge the battery at a large current, boding well for faster charging.
In theory, at least. As with all current battery research projects, there is still some way to go before the technology can be applied in a practical format--one that could be used in electric vehicles.
While the team mentions no apparent drawbacks, such a concept would require more thorough testing before it's applied inn the real world. As ever though, it's evidence that battery technology is still progressing behind the scenes--and that one day, electric cars should be able to travel much further on a charge.


Source: Green Car Reports